Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(4): 103524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377688

RESUMO

The objective of this study was to investigate the effects of sex on meat quality and the composition of amino and fatty acids in the breast muscles of White King pigeon squabs. Untargeted metabolomics was also conducted to distinguish the metabolic composition of plasma in different sexes. Compared with male squabs, female squabs had greater intramuscular fat (IMF) deposition and lower myofiber diameter and hydroxyproline content, leading to a lower shear force. Female squabs also had higher monounsaturated fatty acid and lower n-6 and n-3 polyunsaturated fatty acid proportions in the breast muscle, and had greater lipogenesis capacity via upregulation of PPARγ, FAS and LPL gene expression. Moreover, female squabs had lower inosine 5'-monophosphate, essential, free and sweet-tasting amino acid contents. Furthermore, Spearman's correlations between the differential plasma metabolites and key meat parameters were assessed, and putrescine, N-acetylglutamic acid, phophatidylcholine (18:0/P-16:0) and trimethylamine N-oxide were found to contribute to meat quality. In summary, the breast meat of male squabs may have better nutritional value than that of females, but it may inferior in terms of sensory properties, which can be attributed to the lower IMF content and higher shear force value. Our findings enhance our understanding of sex variation in squab meat quality, providing a basis for future research on pigeon breeding.


Assuntos
Aminoácidos , Ácidos Graxos , Feminino , Masculino , Animais , Ácidos Graxos/análise , Aminoácidos/metabolismo , Músculo Esquelético/química , Galinhas/metabolismo , Carne/análise , Metaboloma
2.
Poult Sci ; 103(4): 103544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402849

RESUMO

The photoperiod is an important factor during rearing and laying period that affects age and body weight at sexual maturation and reproductive performance in poultry; however relevant research on this factor in pigeons is still lacking. Thus, this study investigated the effects of different photoperiodic programs on the reproductive performance and hormonal profile in White King pigeons. From 101 d of age, the pigeons in the control group were exposed to a natural photoperiod until 160 d, and then to a photoperiod of 16 h (16 light [L]: 8 dark [D]) and lasted for 200 d. Pigeons in the 3 experimental groups were exposed to a short photoperiod of 8L: 16D until 160 d, and then to 14L: 10D, 16L: 8D, and 18L: 6D, respectively. The results showed that light-restriction (8L: 16D) during the rearing period and then 14L: 10D or 16L: 8D photostimulation delayed the age at first egg laying in pigeons. However, 16L: 8D after an 8L: 16D photoperiod during the breeding period ensured maximum photosensitivity, and significantly improved the reproductive performance (egg production and fertility rates) in pigeons. Moreover, the highest reproductive performance in group under16L: 8D after 8L: 16D photoperiodic program was accompanied by improved follicle-stimulating hormone and estradiol levels and reduced prolactin hormone levels. The results indicated that photoperiodic programs from rearing to laying period are closely related to the reproductive performance of White King pigeons. The results provide information that 8L: 16D during rearing period and 16L: 8D during laying period can be used to enhance reproductive performance in the pigeon industry.


Assuntos
Columbidae , Fotoperíodo , Animais , Galinhas/fisiologia , Reprodução/fisiologia , Hormônios , Luz
3.
Poult Sci ; 102(12): 103159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871489

RESUMO

The ovarian circadian clock plays a regulatory role in the avian ovulation-oviposition cycle. However, little is known regarding the ovarian circadian clock of geese. In this study, we investigated rhythmic changes in clock genes over a 48-h period and identified potential clock-controlled genes involved in progesterone synthesis in goose ovarian preovulatory granulosa cells. The results showed that BMAL1, CRY1, and CRY2, as well as 4 genes (LHR, STAR, CYP11A1, and HSD3B) involved in progesterone synthesis exhibited rhythmic expression patterns in goose ovarian preovulatory granulosa cells over a 48-h period. Knockdown of BMAL1 decreased the progesterone concentration and downregulated STAR mRNA and protein levels in goose ovarian preovulatory granulosa cells. Overexpression of BMAL1 increased the progesterone concentration and upregulated the STAR mRNA level in goose ovarian preovulatory granulosa cells. Moreover, we demonstrated that the BMAL1/CLOCK complex activated the transcription of goose STAR gene by binding to an E-box motif. These results suggest that the circadian clock is involved in the regulation of progesterone synthesis in goose ovarian preovulatory granulosa cells by orchestrating the transcription of steroidogenesis-related genes.


Assuntos
Relógios Circadianos , Gansos , Feminino , Animais , Gansos/genética , Gansos/metabolismo , Progesterona/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Regulação da Expressão Gênica , Galinhas/genética , Células da Granulosa/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , RNA Mensageiro/metabolismo , Ritmo Circadiano
4.
Animals (Basel) ; 13(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37443931

RESUMO

The selection of follicles determines the reproductive performance of birds, but the process of follicle selection in geese is still elusive. This study focuses on Yangzhou geese during the egg-laying period and divides the follicular development process into three stages: small follicle development, follicle selection, and follicle maturation. Transcriptome sequencing was performed on granulosa cells from large white follicles, small yellow follicles, and F5 and F4 follicles. In addition, we selected the transcripts that remained unchanged during the development and maturation of small follicles but significantly changed during the follicular selection stage as the transcript collection that plays an important role in the follicular selection process. Then, we performed functional analysis on these transcripts and constructed a ceRNA network. The results showed that during the follicular selection stage, the number of differentially expressed mRNAs, miRNAs, and lncRNAs was the highest. In addition, miR-222-3p, miR-2954-3p, miR-126-5p, miR-2478, and miR-425-5p are potential key core regulatory molecules in the selection stage of goose follicles. These results can provide a reference for a better understanding of the basic mechanisms of the goose follicle selection process and potential targets for the precise regulation of goose egg production performance.

5.
Front Vet Sci ; 9: 961431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118333

RESUMO

Spexin (SPX, NPQ), a novel neuropeptide composed of 14 amino acid residues, is evolutionarily conserved among different species. Spexin has been suggested to have pleiotropic functions in mammals. However, reports on spexin in birds are limited. To clarify the role of spexin in goose reproduction, the spexin gene was cloned and analyzed. Analysis of tissue distribution by RT-PCR showed that the expression of spexin and its two receptors was widespread. During the long photoperiod, the expression levels of spexin in the pituitary and hypothalamus and of GALR2/3 in the pituitary decreased, and the GnRH, LHß, and FSHß expression levels increased significantly. This suggests that a long photoperiod regulates reproductive activities by activating the gonadotrope-axis, which is modulated by decreased spexin levels.

6.
Animals (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077995

RESUMO

In order to explore the role of follistatin (FST) in ovarian follicular development and egg production in Yangzhou geese, sixty-four egg laying geese of the same genetic origin were selected and divided into two groups with equal numbers. One group was immunized against the recombinant goose FST protein by intramuscular injection, whereas the control group received bovine serum albumin (BSA) injection. Immunization against FST significantly increased the number of pre-ovulatory follicles. Furthermore, immunization against FST upregulated Lhr, Star, Vldlr, Smad3, and Smad4 mRNA levels in the granulosa layer of pre-hierarchical follicles. The results suggest that FST plays a limiting role in the development of ovarian pre-hierarchical follicles into pre-ovulatory follicles by decreasing follicular sensitivity to activin in geese. The mechanism may be achieved by regulating the SMAD3 signaling pathway, which affects progesterone synthesis and yolk deposition in pre-hierarchical follicles.

7.
Animals (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681829

RESUMO

In this study, we determined the effects of caponization on the growth performance and carcass traits of Yangzhou ganders. Fifty sham operated geese (the control group) and 80 caponized geese (the caponized group) were selected at 150 days of age and reared until 240 days of age. At 210 days of age, 30 geese from the caponized group were selected and fed with testosterone propionate (testosterone group). The results showed that caponization lowered testosterone and increased the total cholesterol and triglyceride concentrations in serum, live weights, average 15 day gains, and feed intake. Abdominal fat and intramuscular fat were significantly higher in the caponized geese than in the control at 240 days. Gene expression analysis showed that caponization promoted abdominal fat deposition and intermuscular fat content by upregulating the expression of adipogenic genes in the liver, adipose tissue, and muscle tissue. The high expression of SOCS3 in the hypothalamus, liver, and muscle of caponized geese suggests that caponization may lead to negative feedback regulation and leptin resistance. Changes in the expression of these genes, along with the downregulation of PAX3 in the breast muscle and MYOG in the leg muscles, indicate that caponization increases the live weight mainly by increasing fat deposition rather than muscle growth. These results expand our understanding of the mechanisms of caponization on growth performance and fat deposition in ganders.

8.
Animals (Basel) ; 12(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35681931

RESUMO

This study was conducted to elucidate the molecular mechanisms underlying heat stress (HS)-induced abnormal egg-laying in laying hens. Hy-Line brown laying hens were exposed to HS at 32 °C or maintained at 22 °C (control) for 14 days. In addition, granulosa cells (GCs) from preovulatory follicles were subjected to normal (37 °C) or high (41 °C or 43 °C) temperatures in vitro. Proliferation, apoptosis, and steroidogenesis were investigated, and the expression of estrogen and progesterone synthesis-related genes was detected. The results confirmed that laying hens reared under HS had impaired laying performance. HS inhibited proliferation, increased apoptosis, and altered the GC ultrastructure. HS also elevated progesterone secretion by increasing the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3b-hydroxysteroid dehydrogenase (3ß-HSD). In addition, HS inhibited estrogen synthesis in GCs by decreasing the expression of the follicle-stimulating hormone receptor (FSHR) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The upregulation of heat shock 70 kDa protein (HSP70) under HS was also observed. Collectively, laying hens exposed to high temperatures experienced damage to follicular GCs and steroidogenesis dysfunction, which reduced their laying performance. This study provides a molecular mechanism for the abnormal laying performance of hens subjected to HS.

9.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613849

RESUMO

The influence of monochromatic green light stimulation on hatching performance and embryo development has been studied in chickens, but not geese. The liver has crucial functions in the regulation of energy metabolism during embryogenesis, but its involvement in green light transduction is still unidentified. We aimed to determine the influence of monochromatic green light on Yangzhou goose hatching performance and embryo development. We also investigated the metabolomics and transcriptomic responses of the embryonic liver to green light to determine the underlying molecular mechanisms. Eggs were incubated under either 12 h of monochromatic green light/dark (12 L:12D) cycles or 24 h of darkness (0G:24D). Green light promoted embryonic development and hatching performance, also affected the expression of myogenic regulatory factors associated with muscle development. It also shortened hatching time and elevated plasma levels of growth hormone and insulin-like growth factor-1. Metabolomics and transcriptomic results revealed differentially expressed genes and metabolites with enhanced gluconeogenesis/glycolysis and increased plasma glucose and pyruvate levels under green light. Hence, the growth-promoting effect possibly through regulating energy metabolism in the liver and myogenic regulatory factors in muscle. Our findings provide important and novel insights into the mechanisms underlying the beneficial effects of green light on goose embryos.


Assuntos
Desenvolvimento Embrionário , Gansos , Glucose , Fígado , Animais , Desenvolvimento Embrionário/efeitos da radiação , Fígado/metabolismo , Fatores de Regulação Miogênica
10.
J Reprod Dev ; 68(1): 12-20, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34690213

RESUMO

Ovarian angiogenesis is an extremely rapid process that occurs during the transition from follicle to corpus luteum (CL) and is crucial for reproduction. It is regulated by numerous factors including transforming growth factor-ß1 (TGFB1). However, the regulatory mechanism of TGFB1 in ovarian angiogenesis is not fully understood. To address this, in this study we obtained high-throughput transcriptome analysis (RNA-seq) data from bovine luteinizing follicular cells cultured in a system mimicking angiogenesis and treated with TGFB1, and identified 455 differentially expressed genes (DEGs). Quantitative real-time PCR results confirmed the differential expression patterns of the 12 selected genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified that the MAPK and ErbB pathways, cell adhesion molecules (CAMs), and extracellular matrix (ECM)-receptor interactions may play pivotal roles in TGFB1-mediated inhibition of CL angiogenesis. TGFB1 phosphorylated ERK1/2 (MAPK1/3) and Akt, indicating that these pathways may play an important role in the regulation of angiogenesis. Several genes with specific functions in cell adhesion and ECM degradation were identified among the DEGs. In particular, TGFB1-induced upregulation of syndecan-1 (SDC1) and collagen type I alpha 1 chain (COL1A1) expression may contribute to the deposition of type I collagen in luteinizing follicular cells. These results indicate that TGFB1 inhibits cell adhesion and ECM degradation processes involving ERK1/2, ErbB, and PI3K/Akt signaling pathways, and leads to inhibition of angiogenesis during the follicular-luteal transition. Our results further reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinization.


Assuntos
Fosfatidilinositol 3-Quinases , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Adesão Celular , Corpo Lúteo/metabolismo , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo
11.
Animals (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266293

RESUMO

Lipopolysaccharide (LPS) from gram-negative bacteria was found to be involved in the decrease in laying performance in goose flocks with high stocking density during summer months. LPS injection delayed the increase in the laying rate and altered hierarchical follicle morphology. While there is evidence that LPS exerts suppressive effects on goose reproduction, the time course effects of LPS on the hypothalamus-pituitary-ovary (HPG) axis remain elusive. In this study, we investigated the expression of genes in the HPG axis and the plasma gonadotrophin hormone concentrations in breeding geese at 0, 6, 12, 24, and 36 h after intravenous injection with LPS. The results showed that LPS treatment enhanced and suppressed expression of hypothalamic gonadotropin-inhibiting hormone (GnIH) and gonadotrophin-releasing hormone (GnRH) mRNA, respectively, and similar effects were observed on the mRNA expression of their receptors, GnIHR and GnRHR, in the pituitary. LPS treatment transiently increased follicle FSHß mRNA expression at 12 h and exerted no significant effect on LHß mRNA expression in the pituitary. Regardless of the expression of FSHß and LHß, plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were significantly increased during 24-36 h after LPS treatment. In the ovary, StAR and Cyp11a1 were mainly expressed in the granulosa layer (GL) of hierarchical follicles, while Cyp17a1 and Cyp19a1 were mainly expressed in white follicles (WFs) and yellowish follicles (YFs), and to a lesser extent in the theca layer (TL). After LPS treatment, the mRNA levels of Cyp11a1 in the GLs, Cyp17a1 in the WFs and TL, and Cyp19a1 in the WFs, YFs, and TL were significantly decreased. However, LPS treatment transiently upregulated StAR expression at 12 h. These results indicate that the exposure of laying geese to LPS may impair the HPG axis and disturb ovarian steroidogenesis. Our research provides new insights into reproductive dysfunction caused by LPS and the immune challenge in birds.

12.
Cell Signal ; 73: 109702, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619562

RESUMO

Lipopolysaccharide (LPS) is an inhibitory factor that causes hormonal imbalance and subsequently affects ovarian function and fertility in mammals. Previous studies have shown that the exposure of granulosa cells (GC) to LPS leads to steroidogenesis dysfunction. However, the effects of LPS on the viability of GC remain largely unclear. In the present study, we aimed to address this question and unveil the underlying molecular mechanisms using cultured porcine GC. Results showed that GC proliferation and tumor necrosis factor α (TNFα) secretion were significantly increased after exposure to LPS, and these effects were completely reversed by blocking the TNFα sheddase, ADAM17. Moreover, GC proliferation induced by LPS was mimicked by treatment with recombinant TNFα. In addition, SerpinE1 and SerpinB2 expression levels increased in GC after treatment with LPS or recombinant TNFα, whereas blocking the Erk1/2 pathway completely abolished these effects and also inhibited GC proliferation. Further, consistent with the effects of blocking the Erk1/2 pathway, cell proliferation was completely inhibited by knocking down SerpinE1 or SerpinB2 in the presence of LPS or recombinant TNFα. Mitochondrial membrane potential (MMP) polarization in GC was increased by LPS or recombinant TNFα treatment, and these changes were completely negated by Erk1/2 inhibition, but not by SerpinE1 or SerpinB2 knockdown. Taken together, these results suggested that the TNFα-mediated upregulation of SerpinE1 and SerpinB2, through activation of the Erk1/2 pathway plays a crucial role in LPS-stimulated GC proliferation, and the increase in GC MMP may synergistically influence this process.


Assuntos
Células da Granulosa/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína ADAM17/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Feminino , Sistema de Sinalização das MAP Quinases , Suínos
13.
J Reprod Dev ; 66(4): 331-340, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32281545

RESUMO

Magang geese exhibit a unique characteristic of follicular development, with eight largest orderly arranged pre-ovulatory follicles in the abdominal cavity. However, little is known about the mechanisms underlying this follicular development. This study aimed to compare gene expression profiles of granulosa cells (GCs) at different stages of follicular development and provide comprehensive insights into follicle selection and the mechanisms underlying the well-defined follicle hierarchy in Magang geese. GCs of large white follicles (LWFs), small yellow follicles (SYFs), F8, F4, and F1 were used for RNA-seq analysis; 374, 1117, 791, and 593 genes were differentially expressed in stages LWFs to SYFs, SYFs to F8, F8 to F4, and F4 to F1, respectively, suggesting that these genes contribute to follicle selection and development. Reliability of sequencing data was verified through qPCR analysis of 24 genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways revealed a complex mechanism that remodels the extracellular matrix and turnover of extracellular matrix components in follicular development and ovulation and involves multiple pathway, such as focal adhesion, adherens junction, and extracellular matrix-receptor interaction. Some unique characteristics were observed during the different follicular development stages. For instance, some differentially expressed genes were enriched in progesterone-mediated oocyte maturation and steroid biosynthesis from stage SYFs to F8, whereas others were enriched in actin cytoskeleton regulation and vascular smooth muscle contraction from stage F4 to F1. These findings enhance our current understanding of GC function and ovarian follicles during the key stages of follicular development.


Assuntos
Fase Folicular/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Transcriptoma , Animais , Feminino , Gansos , Perfilação da Expressão Gênica , Folículo Ovariano/metabolismo
14.
Poult Sci ; 98(10): 4673-4684, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30993344

RESUMO

This study was designed to investigate the effects of fermented feed diets on the growth performance and cecal microbial community in geese, and to examine associations between the gut microbiota and growth performance. A total of 720 healthy, 1-day-old male SanHua geese were used for the 55-D experiment. Geese were randomly divided into 4 groups, each with 6 replicates of 30 geese. Groups were fed a basal diet supplemented with 0.0, 2.5, 5.0, or 7.5% fermented feed. The results showed that 7.5% fermented feed had an increasing trend in the body weight and average daily gain of the geese; however, there was no significant response to increasing dietary fermented feed level with regards to ADFI and FCR. In addition, compared with the control group, there was a higher abundance of bacteria in the phylum Bacteroidetes in the cecal samples of geese in the 7.5% fermented feed group (53.18% vs. 41.77%, P < 0.05), whereas the abundance of Firmicutes was lower in the 7.5% fermented feed group (36.30% vs. 44.13%, P > 0.05). At the genus level, the abundance of Bacteroides was increased by adding fermented feed to geese diets, whereas the abundances of Desulfovibrio, Phascolarctobacterium, Lachnospiraceae_uncultured, Ruminiclostridium, and Oscillospira were decreased. These results indicate that fermented feeds have an important effect on the cecal microflora composition of geese, and may affect host growth, nutritional status, and intestinal health.


Assuntos
Ceco/microbiologia , Dieta/veterinária , Microbioma Gastrointestinal/fisiologia , Gansos/crescimento & desenvolvimento , Gansos/microbiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Gansos/metabolismo , Masculino , Distribuição Aleatória
15.
Fish Shellfish Immunol ; 90: 363-375, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30974219

RESUMO

Superoxide dismutases (SODs) are important antioxidant enzymes that occur in virtually all oxygen-respiring organisms, and copper/zinc SOD (Cu/ZnSOD) is one of the most important SODs. In the present study, Macrobrachium rosenbergii Cu/Zn-SOD was expressed in a yeast eukaryotic system. The open reading frame (ORF) of MrCu/ZnSOD was cloned into the plasmid vector pHAC181, and the recombinant plasmid was integrated into the downstream region of the GAL1 promoter in Saccharomyces cerevisiae strain GAL1-ScRCH1 via homologous recombination. The resulting recombinant MrCu/ZnSOD consisted of a 3 × HA-tag at its C-terminal. Via western blot, the molecular weight of the recombinant MrCu/ZnSOD was estimated at about 30 kDa. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of this recombinant MrCu/ZnSOD ranged from 0.556 to 0.840 µM, and from 0.967 to 2.015 µM, respectively. The recombinant MrCu/ZnSOD protein was able to agglutinate four Gram-negative bacterial strains, as well as two of three Gram-positive strains (except Staphylococcus aureus). This demonstrated that the recombinant protein possessed some antimicrobial activity against certain Gram-positive and Gram-negative bacteria. M. rosenbergii were fed with the recombinant yeast strain MrCu/ZnSOD for 4 weeks and then challenged with the most common crustacean pathogen, Vibrio parahaemolyticus. This group of prawns presented lower mortality, higher enzymatic activity, and higher expression of the mRNA of immune-related genes than that in the control groups. Taken together, these results suggest that MrCu/ZnSOD is an antioxidant enzyme and antimicrobial peptide involved in the crustacean innate immune system and offers protection to the host against pathogenic bacteria.


Assuntos
Palaemonidae/genética , Palaemonidae/imunologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/imunologia , Vibrio parahaemolyticus/imunologia , Aglutinação , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Microrganismos Geneticamente Modificados/metabolismo , Palaemonidae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase-1/metabolismo
16.
Theriogenology ; 128: 122-132, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30743101

RESUMO

The present study was designed to investigate the potential role of immunization against inhibin on testicular development, plasma testosterone concentration and expression of relevant genes in hypothalamus, pituitary, Leydig and Sertoli cells in Yangzhou ganders. For this purpose, Yangzhou ganders, n = 30 were divided into groups A and B. Group B ganders were actively immunized against inhibin α-subunit, while group A ganders were immunized with bovine serum albumin (BSA), which served as control. Immunization against inhibin elevated testes weights. In addition, immunization against inhibin elevated GnRH, StAR, CYP11A1 and AMH mRNA transcription expressions as depicted by qRT-PCR. Furthermore, hypothalamic GnRH-I mRNA expressions were up regulated, while GnIH mRNA transcription expression showed reciprocal expression on day 227. LH-ß mRNA transcription expression remained unaffected. In conclusion, our findings suggest that active immunization against inhibin affect spermatogenesis and testicular development through regulations of hypothalamic, pituitary and testicular genes expressions.


Assuntos
Gansos/imunologia , Inibinas/imunologia , Testículo/crescimento & desenvolvimento , Vacinação/veterinária , Animais , Hormônio Antimülleriano/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Gansos/crescimento & desenvolvimento , Gansos/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Hipófise/metabolismo , Espermatogênese , Testículo/imunologia , Testículo/metabolismo , Testosterona/sangue
17.
Fish Shellfish Immunol ; 84: 341-351, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30053533

RESUMO

Pattern recognition proteins (PRPs) activate the innate immune system in invertebrates, and lipopolysaccharide- and ß-1,3-glucan-binding protein (LGBP) is an important PRP with various biological functions. Here, the open reading frame (ORF) of Macrobrachium rosenbergii LGBP (MrLGBP) was cloned into plasmid vector pHAC181, then integrated into downstream of the GAL1 promoter of Saccharomyces cerevisiae strain GAL1-ScRCH1 via homologous recombination, followed by its expression in the yeast eukaryotic system. The resulting recombinant LGBP contained a 3 × HA-tag at its C terminus and had a molecular weight of about 45 kDa, as evaluated by western blot analysis. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were ranged from 0.340 to 0.802 and 1.189-1.810 µM, respectively. The recombinant MrLGBP protein agglutinated almost all tested bacteria except Bacillus thuringiensis and Staphylococcus aureus. These results revealed that this recombinant protein exhibited antimicrobial activity against some Gram-positive and Gram-negative bacteria. M. rosenbergii prawns were fed with the recombinant yeast strain MrLGBP for 1 month and challenged with the most common crustacean pathogen, Vibrio parahaemolyticus. These prawns showed lower mortality and higher enzymatic activity and expression levels of immunity genes than did the control groups. All these results suggest that MrLGBP may play important roles in the innate immunity of crustaceans, and recombinant strain S. cerevisiae MrLGBP may be useful for the development of an effective immune feed additive in the future.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Transporte/genética , Imunidade Inata/genética , Lectinas/genética , Palaemonidae/genética , Palaemonidae/imunologia , Animais , Proteínas de Artrópodes/metabolismo , Proteínas de Transporte/metabolismo , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Lectinas/metabolismo , Microrganismos Geneticamente Modificados/genética , Saccharomyces cerevisiae/genética
18.
J Reprod Dev ; 64(4): 343-350, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29887536

RESUMO

Treatment of fetal rat and embryonic chicken with exogenous glucocorticoids induces premature differentiation of growth hormone (GH) secreting cells. The effect of corticosterone (CORT) on somatotroph differentiation was mostly studied in pituitary cells in vitro. Currently, there is no evidence for glucocorticoid-mediated induction of somatotroph differentiation during pituitary development in bird species other than chicken. In this study, we sought to find out if in ovo injection of corticosterone into developing goose embryos could induce premature increase of GH in somatotrophs. On embryonic day (e) 15, the albumen of fertile goose eggs was injected with 300 µl of 0.9% saline, 300 µl 5 × 10-8M CORT, or 300 µl 5 × 10-6 M CORT. Embryos were allowed to develop until e20 and e28 and isolated pituitaries were subjected to quantitative real-time PCR and immunocytochemistry to detect GH mRNA and protein, respectively. At e20 and e28, blood from chorioallantoic vessels was subjected to radioimmunoassay for analysis of plasma GH protein. In ovo administration of exogenous corticosterone brought about a 2.5-fold increase in the expression of GH mRNA and increased the in situ expression of GH protein in goose pituitary cells, and enhanced plasma GH levels compared to that of the respective controls at e20. These findings prove that administration of glucocorticoid could stimulate the expression of GH in somatotrophs during goose embryonic development. Our results suggest the probable involvement of membrane glucocorticoid receptor in the corticosterone mediated expression of GH. Together with previously published data, our results suggest that corticosterone mediated induction of GH expression during embryonic development is relatively conserved among different vertebrates.


Assuntos
Corticosterona/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Hormônio do Crescimento/metabolismo , Hipófise/efeitos dos fármacos , Somatotrofos/efeitos dos fármacos , Animais , Feminino , Gansos , Hormônio do Crescimento/genética , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Somatotrofos/metabolismo
19.
Mol Immunol ; 91: 75-85, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28889064

RESUMO

Spiroplasma eriocheiris is a novel pathogen similar to the Spiroplasma mirum and also had an ability to infect the newborn mice and caused cataract. Our study was designed to study how S. eriocheiris infects mouse 3T6-Swiss albino cells and to elucidate the cellular molecular pathogenesis of Spiroplasma. FCM analysis and MTT analysis clearly shown that S. eriocheiris could induce 3T6 cell apoptosis and cause cell viability decreased seriously. Immunofluorescence experiments and TEM analysis shown that S. eriocheiris can invade 3T6 cells and form typical inclusion bodies and exhibit vacuolization in vitro. S. eriocheiris-oxytetracycline protection assay show that the infective bacteria already were detected at 1h post infection, and sharply increased at 12h after the bacteria infection. To further study the infection mechanism of S. eriocheiris, global mRNA and microRNA (miRNA) expression profiling were analyzed after the cells infected with the bacteria. A total of 619 non-redundant annotated transcripts (183 up-regulated and 436 down-regulated) and 22 miRNAs (8 up-regulated and 14 down-regulated) were differential expression after 6h S. eriocheiris infection compared to control group. Integrated analysis shown that homologous genes from differential expression miRNA targets and the differential expression genes of the mRNA microarray were major focused on two important pathways focal adhesion and MAPK signaling pathway. To validate the results of microarray, eight focal adhesion (ß-Catenin, Parvin, Grb2 and ERK) and MAPK signaling pathway (FGFR, Grb2, ERK, MKK3, p38 and JNK) genes and the housekeeping gene GAPDH were assayed by qPCR and Western blot to confirm the results. Eight miRNAs (miR-143-3p, miR-214-5p, miR-322-3p, miR-328-5p, miR-351-5p, miR-466h-5p, miR-503-5p and miR-30c-1-3p) and the housekeeping gene U6 miRNA were assayed by qPCR to confirm the results of microarray. All the results help us better understand the infection mechanism of S. eriocheiris.


Assuntos
Apoptose/imunologia , Regulação da Expressão Gênica/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Spiroplasma/imunologia , Animais , Linhagem Celular , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia
20.
J Reprod Dev ; 63(3): 295-303, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28413176

RESUMO

In asymmetric chick gonads, the left and right female gonads undergo distinct programs during development, generating a functional ovary on the left side only. Despite some progress being made in recent years, the mechanisms of molecular regulation remain incompletely understood, and little genomic information is available regarding the degeneration of the right ovary in the chick embryo testis. In this study, we performed transcriptome sequencing to investigate differentially expressed genes in the left and right ovaries and gene functions at two critical time points; embryonic days 6 (E6) and 10 (E10). Using high-throughput RNA-sequencing technologies, 539 and 1046 genes were identified as being significantly differentially expressed between 6R-VS-6L and 10R-VS-10L. Gene ontology analysis of the differentially expressed genes revealed enrichment in functional pathways. Among these, candidate genes associated with degeneration of the right ovary in the chick embryo were identified. Identification of a pathway involved in ovarian degeneration provides an important resource for the further study of its molecular mechanisms and functions.


Assuntos
Embrião de Galinha/fisiologia , Ovário/embriologia , Animais , Feminino , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...